Trajectory Recovery From Ash: User Privacy Is NOT Preserved in Aggregated Mobility Data

نویسندگان

  • Fengli Xu
  • Zhen Tu
  • Yong Li
  • Pengyu Zhang
  • Xiaoming Fu
  • Depeng Jin
چکیده

Human mobility data has been ubiquitously collected through cellular networks and mobile applications, and publicly released for academic research and commercial purposes for the last decade. Since releasing individual’s mobility records usually gives rise to privacy issues, datasets owners tend to only publish aggregated mobility data, such as the number of users covered by a cellular tower at a specific timestamp, which is believed to be sufficient for preserving users’ privacy. However, in this paper, we argue and prove that even publishing aggregated mobility data could lead to privacy breach in individuals’ trajectories. We develop an attack system that is able to exploit the uniqueness and regularity of human mobility to recover individual’s trajectories from the aggregated mobility data without any prior knowledge. By conducting experiments on two real-world datasets collected from both mobile application and cellular network, we reveal that the attack system is able to recover users’ trajectories with accuracy about 73%∼91% at the scale of tens of thousands to hundreds of thousands users, which indicates severe privacy leakage in such datasets. Through the investigation on aggregated mobility data, our work recognizes a novel privacy problem in publishing statistic data, which appeals for immediate attentions from both academy and industry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Framework for Mobility Pattern Mining and Privacy- Aware Querying of Trajectory Data

Mobility data sources feed larger and larger trajectory databases nowadays. Due to the need of extracting useful knowledge patterns that improve services based on users’ and customers’ behavior, querying and mining such databases has gained significant attention in recent years. Existing approaches for privacy-aware mobility data sharing aim at publishing an anonymized version of the mobility d...

متن کامل

Re-Identification Risk versus Data Utility for Aggregated Mobility Research Using Mobile Phone Location Data

Mobile phone location data is a newly emerging data source of great potential to support human mobility research. However, recent studies have indicated that many users can be easily re-identified based on their unique activity patterns. Privacy protection procedures will usually change the original data and cause a loss of data utility for analysis purposes. Therefore, the need for detailed da...

متن کامل

Automatic implementation of a new recovery coefficient for Reliable contour milling

In contour milling, to render the machining process more automated with significant productivity without remaining material after machining, a new recovery coefficient was developed. The coefficient was inserted in the computation of contour parallel tool paths to fix the radial depth of cut in the way to ensure an optimized overlap area between the passes in the corners, without residuals. Thu...

متن کامل

Privacy and Security of Big Data in THE Cloud

Big data has been arising a growing interest in both scien- tific and industrial fields for its potential value. However, before employing big data technology into massive appli- cations, a basic but also principle topic should be investigated: security and privacy. One of the biggest concerns of big data is privacy. However, the study on big data privacy is still at a very early stage. Many or...

متن کامل

Privacy and Security of Big Data in THE Cloud

Big data has been arising a growing interest in both scien- tific and industrial fields for its potential value. However, before employing big data technology into massive appli- cations, a basic but also principle topic should be investigated: security and privacy. One of the biggest concerns of big data is privacy. However, the study on big data privacy is still at a very early stage. Many or...

متن کامل

A New Ontology-Based Approach for Human Activity Recognition from GPS Data

Mobile technologies have deployed a variety of Internet–based services via location based services. The adoption of these services by users has led to mammoth amounts of trajectory data. To use these services effectively, analysis of these kinds of data across different application domains is required in order to identify the activities that users might need to do in different places. Researche...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017